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Density and pair correlation function of confined identical particles: The Bose-Einstein case
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Two basic correlation functions are calculated for a model ofN harmonically interacting identical particles
in a parabolic potential well. The density and the pair correlation function of the model are investigated for the
boson case. The dependence of these static response properties on the complete range of the temperature and
of the number of particles is obtained. The calculation technique is based on the path integral approach of
symmetrized density matrices for identical particles in a parabolic confining well.@S1063-651X~97!14306-9#

PACS number~s!: 05.30.2d, 03.75.Fi, 32.80.Pj.
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I. INTRODUCTION

Generalizing the Feynman approach of identical partic
in a box @1# to the case of identical particles in a parabo
confining potential, the present authors derived analytic
pressions for the propagator and for the partition function
a system ofN harmonically interactingidentical particles
~bosons or fermions! in a parabolic well@2#, hereafter re-
ferred to as I. This model, giving rise to repetitive Gauss
integrals, also allows us to obtain the generating function
the partition function. For an ideal gas of noninteracting p
ticles in a parabolic well, this generating function coincid
with the grand-canonical partition function. For interacti
particles this generating function circumvents the constra
on the summation over the cycles of the permutation gr
at the expense of doing an extra path integral.

In the present paper the one- and two-point correlat
functions of the model are calculated using their genera
function as we did for the thermodynamic properties of
model. Also, here we have to introduce extra path integ
of Gaussian nature to facilitate the cyclic summations.

The one- and two-point correlation functions of the mod
are obtained for the boson case as well as for the ferm
case. But in view of the recent interest in Bose-Einstein c
densation in a trap@3–5#, the explicit evaluation and the
discussion of the results are restricted to the boson cas
the present paper. The fermion case will be studied i
forthcoming paper.

In the case of distinguishable particles, the correlat
functions play a key role in the variational approximation f
path integrals@6,7#. This variational method can be reformu
lated for indistinguishable particles, and the knowledge
the one- and two-point correlation functions for harmon
trial actions is as crucial as it is for distinguishable particl
For any algorithmic approach to many-body diffusion@8–10#
for interacting particles, the knowledge of the correlati
functions of the model is very useful to test the actual imp
mentations. Furthermore, the model provides an exampl

*Also at Universiteit Antwerpen~RUCA! and Technische Univer
siteit Eindhoven, The Netherlands.
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an exactly tractable system with interactions, which clea
exhibits the effects of Bose-Einstein condensation in the s
cific heat@11# and in the moment of inertia@12#.

The one-body potential energyV1 and the two-body po-
tential energyV2 of the model system are given by

V5V11V2 , V15
mV2

2 (
j51

N

r j
2,

V252
mv2

4 (
j ,l51

N

~r j2r l !
2. ~1.1!

The two-body interaction is assumed to be repulsive; rep
ing 2v2 by v2 in V2 gives the attractive case. As a result
the diagonalization, one obtainsin each dimensionone de-
gree of freedom~the center of mass! with frequencyV, and
N21 degrees of freedom with frequencyw given by

w5AV22Nv2. ~1.2!

For this many-body system, distinguishability of the partic
therefore implies that one is dealing with a system that
duces to 3N degrees of freedom, each degree of freed
representing one linear harmonic oscillator. It is clear that
such a system the propagator, the thermodynamic functi
and the correlation functions are well known@13#.

For identical particles~bosons or fermions! the propagator
can be obtained from the decomposition of the underly
processes in terms of four orthogonal processes with w
defined boundary conditions@8–10#. A typical sample path
for fermions is provided by the subprocess with absorption
the boundary for thex direction~leading to a fermion diffu-
sion process!, while for they andz directions a boson dif-
fusion process with reflection at the boundary has to be u
This procedure is used to generate the trajectory of the w
ers~including they andz components!. The path of a walker
in this particular subprocess terminates if the motion in E
clidean time is absorbed along thex direction. Indistinguish-
ability therefore has the important effect of making t
coupled oscillator problem in three dimensions a genu
three-dimensional~3D! problem.
6795 © 1997 The American Physical Society
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In I we showed how extra degrees of freedom for t
center of mass can be introduced~in Fourier space!, leading
to a propagator which factorizes. The extra degrees of f
dom can be integrated out afterwards. As a consequence
internal degrees of freedom of the interacting oscillator s
tem can be considered as the degrees of freedom of an
noninteracting oscillator system. This mapping allows us
use the grand-canonical partition function of the nonintera
ing system as the generating function for the system in in
action, provided the fugacity and hence the thermodynam
potential are identified as usual.

The calculation of the density and the pair correlati
function heavily relies on the calculations presented in
which makes it difficult to make this paper self-contain
without repeating some of the material presented in I.
tried to overcome this inconvenience partly by using
same notation as in I, and by a limited number of expli
references to the detailed manipulations in I if similar situ
tions are encountered.

The paper is organized as follows. In Sec. II the one- a
two-point correlation functions are calculated for identic
particles~bosons or fermions!. In Sec. III the density and the
pair correlation function are analyzed for the boson case
Sec. IV we discuss the results, and draw some conclusio

II. STATIC RESPONSE PROPERTIES
OF A MANY-BODY SYSTEM

For the calculation of the static response properties o
many-body system, the correlation functions( l^e

iq•r l& I and
( l ,l 8^e

iq•(r l2r l 8)& I are the key ingredients. The subscriptI
emphasizes that identical particles are considered~which can
be specified to be bosons with subscriptB or fermions with
subscriptF) in three-dimensions. In the path integral a

proach the expectation values of an expressionA( r̄ 8,t) are
given by

^A~t!& I5
E d r̄ E d r̄ 8KI~ r̄ ,bu r̄ 8,t!A~ r̄ 8,t!KI~ r̄ 8,tu r̄ ,0!

E d r̄KI~ r̄ ,bu r̄ ,0!

,

~2.1!

whereKI is the statistical propagator of the identical pa

ticles andr̄ is the 3N-dimensional vector containing the co
ordinatesr1 , . . . ,rN of theN particles. In this notation the
probability density, the pair correlation function and the
Fourier transforms are given by

n~r !5
1

NK (
l51

N

d~r2r l !L
I

5E dq

~2p!3
nqe

2 iq–r

↔nq5
1

N (
l51

N

^eiq•r l& I , ~2.2!
e-
the
-
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o
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r-
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I,

e
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d
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a

g~r !5
1

NK (
l ,l 8Þ l

N

d~r2r l1r l 8!L
I

5E dq

~2p!3
gqe

2 iq–r

↔gq5
1

N (
l ,l 8Þ l

N

^eiq•~r l2r l 8!& I . ~2.3!

Collecting the appropriate expressions for the propaga
KI( r̄ ,bu r̄ 8,t) and KI( r̄ 8,tu r̄ ,0) from I, one sees that th
Fourier transformsnq andgq are given by

nq5
1

NZI
E E dR dk

~2p!3
eik•RE d r̄ e2 i k̄• r̄(

l
eiq•r l

1

N!

3(
p

jp)
j51

N

K„~Pr ! j ,bur j ,0…w , ~2.4!

gq5
1

NZI
E E dR dk

~2p!3
eik•RE d r̄ e2 i k̄• r̄

1

N!

3(
p

jp (
l ,l 8Þ l

N

eiq•~r l2r l 8!)
j51

N

K„~Pr ! j ,bur j ,0…w ,

~2.5!

where ZI is the partition function,K(r j8 ,bur j ,0)w is the
propagator of a 3D harmonic oscillator with frequencyw,
P denotes a permutation matrix, andj521 assures the re
quired antisymmetry for fermions, whereasj511 describes
bosons. We first show how a tractable expression can
obtained fornq , and subsequently use an analogous pro
dure to calculategq .

A. Single-particle expectation values

Using the cyclic decomposition, and denoting byM l the
number of cycles of lengthl , the expression fornq can be
written in terms of the cycles in the same way as we did
the partition function in I:

nq5
1

NZI
E E dR dk

~2p!3
eik•R (

M1•••MN
(
l
l M l Kl ~k,q!

3
j~ l 21!M l

M l ! l
M l

„Kl ~k!…M l 21

3 )
l 8Þl

j~ l 821!M l 8

M l 8! ~ l 8!M l 8
„Kl 8~k!…M l 8, ~2.6!

where

Kl ~k,q!5E dr l 11E dr l •••E dr1d~r l 112r1!e
iq•r1

3)
j51

l

K~r j11 ,bur j ,0!we
2 i ~1/N!k–r j , ~2.7!

andKl (k)5Kl (k,q50) is precisely the same function a
found in Eq.~2.20! of I for the determination of the partition
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function. Both the integrations overk andR only involve
Gaussian integrands, and one eventually finds, after s
algebra,

nq5expF2
\q2

4mN
S coth12b\V

V
2

coth
1

2
b\w

w
D G ñq .

~2.8!

The factor in front ofñq accounts for the center of mas
and obviously reduces to unity in the noninteracting c
wherew5V. The factor ñq itself denotes the expectatio
value of( le

iq•r l in the subspace of therelative coordinate
system onlywith partition functionZI(N):

ñq5
1

NZI~N! (
M1•••MN

F(
l

M l l

3expS 2

\q2coth
1

2
l b\w

4mw
D G

3)
l

j~ l 21!M l

M l ! l
M l S 1

2sinh
1

2
l b\wD 3M l

. ~2.9!

In Kl (k,q), one recognizes the partition function~over a
time interval l b) of a driven 3D harmonic oscillator with
frequencyw,

Kl ~k,q!5E dr K~r ,l bur ,0!we
2*0

l bdt fq~t!•r ~t!,

fq~t!5 i
1

N
k(
j51

l 21

d~t2 jb!1 i S kN2qD d~t!, ~2.10!

which is known@1,6# in closed form:

Kl ~k,q!5
1

S 2sinhl b

2
\wD 3e

Fq,

Fq5
\

2E0
l b

dtE
0

l b

ds
fq~t!•fq~s!

2mw

3

coshS l b

2
2Ut2sU D\w

sinh12 l b\w
. ~2.11!

The calculation ofFq , given f q(t) as a sum ofd functions,
is straightforward. The result is
e

e

Fq52
\

4mwS l k2N2 coth
1

2
b\w22

k•q

N
coth

1

2
b\w

1q2coth
1

2
l b\wD , ~2.12!

and, consequently,

Kl ~k,q!5Kl ~k!expS \k•q

2Nmw
coth

1

2
b\w

2
\q2

4mw
coth

1

2
l b\wD , ~2.13!

Kl ~k!5
1

S 2sinhl b

2
\wD 3 expS 2

\

4mw

l k2

N2 coth
1

2
b\wD .

~2.14!

Introducing the generating function G1(u,q)
5(N50

` @ZI(N)Nñq#u
N,

G1~u,q!5 (
N50

`

(
M1•••MN

F(
l

M l l

3expS 2
\q2coth12l b\w

4mw D G
3)

l

1

M l ! F j~ l 21!ul

l ~ 2sinh12 l b\w!3GM l

, ~2.15!

the summations can be done:

G1~u,q!5J I~u! (
l 51

` j l 21expS 2
\q2

4mw
coth

1

2
l b\wD

~2sinh12 l b\w!3
ul ,

~2.16!

whereJ I(u)5(N50
`ZI(N)u

N is the generating function o
the partition functionZI(N) of N identical oscillators in the
relative coordinate system, studied in I. Consequently

ñq5
1

N(
l 51

N j l 21expS 2
\q2

4mw
coth12 l b\wD

~ 2sinh12 l b\w!3

ZI~N2l !

ZI~N!
.

~2.17!

Considering the limitq˜0, it should be noted that the sum
rule ñq5051 is indeed satisfied.

B. Two-particle expectation values

Similarly to the treatment of the single-particle correlati
function, the Fourier transform, which allows us to treat t
center-of-mass coordinate as an independent degree of
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dom, is introduced. The cyclic decomposition of the perm
tations implies that a factoreiq•r l occurs once in each pos
tion of each cycle. Furthermore a different factoreiq•r l 8 oc-
curs in each position of each cycle which differs fromr l ~i.e.,
a

x-
-the casel5 l 8 has to be excluded ifr l andr l 8 are within the
same cycle!. Taking these bookkeeping considerations in
account, the cyclic decomposition of the summation over
permutations leads to
gq5
1

ZIN
E E dR dk

~2p!3
eik•R (

M1•••MN
S )
l

j~ l 21!M l

M l ! l
M l D

3(
l
l M l S (

j51

l 21

Kl ~k,q; j11!„Kl ~k!…M l 21 )
l 8Þl

„Kl 8~k!…M l 8

1l ~M l 21!Kl ~k,q!Kl ~k,2q!„Kl ~k!…M l 22 )
l 8Þl

„Kl 8~k!…M l 8

1 (
l 8Þl

l 8M l 8Kl ~k,q!Kl 8~k,2q!„Kl ~kW !…M l 21
„Kl ~k!…M l 821 )

l 9Þl ,l 8
„Kl 9~k!…M l 9

D , ~2.18!
whereKl (k,q) andKl (k) are defined as Sec. II A and
functionKl (k,q; j ) is introduced which is given by

Kl ~k,q; j !5E dr l 11E dr l •••E dr1d~r l 112r1!

3eiq•r1e2 iq•r j

3 )
j 851

l

K~r j 811 ,bur j 8,0!w

3e2 i ~1/N!k–r j 8. ~2.19!

In Kl (k,q; j ), one recognizes the partition function~over a
time interval l b) of a driven 3D harmonic oscillator with
frequencyw:

Kl ~k,q; j11!5E dr K~r ,l bur ,0!we
2*0

l bdthq~t, j !•r ~t!,

hq~t, j !5 i
1

N
k (
j 850

l 21

d~t2 j 8b!2 iqd~t!1 iqd~t2 jb!.

~2.20!

Similarly as for single-particle correlation functions, this e
pression is known@1,6# in closed form:
Kl ~k,q; j11!5S 1

2sinh
l b

2
\wD 3

eCq~ j !,

Cq~ j !5
\

2E0
l b

dtE
0

l b

ds f
hq~t, j !•hq~t, j !

2mw

3

coshS l b

2
2Ut2sU D\w

sinh
1

2
l b\w

. ~2.21!

The explicit evaluation of the influence functionCq( j ) is
somewhat involved but straightforward,

Cq~ j !52
l

N2

\k2

4mw

eb\w11

eb\w21

2
\q2

2mw

cosh12 l b\w2cosh~ 1
2 l 2 j !b\w

sinh12 l b\w
,

~2.22!

and, consequently,
n

Kl ~k,q; j11!5Kl ~k!expS 2
\q2

2mw

cosh12 l b\w2cosh~ 1
2 l 2 j !b\w

sinh12 l b\w
D . ~2.23!

Using the results obtained in Sec. II A forKl (k,q) andKl (k), the Fourier transform of the pair correlation functio
becomes
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gq5
1

ZIN
E E dR dk

~2p!3
eik•R

3 (
M1•••MN

S )
l

j~ l 21!M l

M l ! l
M l D)

l
„Kl ~k!…M l (

l
l M l S (

j51

l 21

expS 2
\q2

2mw

cosh12 l b\w2cosh~ 1
2 l 2 j !b\w

sinh12 l b\w
D

1l ~M l 21!expS 2
1

2

\q2

mw
coth

1

2
l b\wD

1 (
l 8Þl

l 8M l 8expF2
1

4

\q2

mw
~coth12 l b\w1coth12 l 8b\w!G D .

~2.24!
s
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The condition( l l M l 5N on the cyclic decomposition
simplifies) l „Kl (k)…M l , and the integrations overk andR
are then straightforward, resulting in (sinh12b\w/

sinh 1
2b\V)3. The remaining summation over the cycles c

again be done if one introduces the appropriate genera
function

G2~u,q!5 (
N50

`

@ZI~N!Ngq#u
N, ~2.25!

which lifts the restriction on the number of cycles of give
length. The summation is straightforward. Withb5e2b\w,
one obtains

G2~u,q!5J I~u!H (
l 51

`
j l 21ul b

3
2 l

~12bl !3

3 (
j51

l 21

expS 2
\q2

2mw

~12bj !~12bl 2 j !

12bl D
1F (

l 51

`
j l 21ul b~3/2!l

~12bl !3
expS 2

\q2

4mw

11bl

12bl D G2J .
~2.26!

Using (( l 51
` al )

25( l 52
` ( j51

l 21ajal 2 j , and defining

Ql , j~b!5
12bl

~12bj !~12bl 2 j !
, ~2.27!

the terms can be combined into

G2~u,q!5J I~u! (
l 52

`
j l 21ul b~3/2!l

~12bl !3

3 (
j51

l 21 FexpS 2
\q2

2mw

1

Ql , j~b! D
1j„Ql , j~b!…3expS 2

\q2

2mw
Ql , j~b! D G .

~2.28!
ng

It should be noticed that only cycles with length at least t
contribute to the pair correlation function, as is to be e
pected. Because the series expansion ofG2(u,q) in powers
of u yields ZI(N)Ngq as the coefficient ofuN, one immedi-
ately obtains

Ngq5
1

ZI~N! (l 52

N

ZI~N2l !
j l 21b

3
2 l

~12bl !3

3 (
j51

l 21 FexpS 2
\q2

2mw

1

Ql , j~b! D
1j„Ql , j~b!…3expS 2

\q2

2mw
Ql , j~b! D G . ~2.29!

In the case of the pair correlation functiongq , the sum rule
gq505N21 can also be checked. The proof proceeds
induction, but it is rather tedious and is omitted here. A
details of this calculation are provided upon request.

III. BOSON DENSITY
AND PAIR CORRELATION FUNCTION

In this section the density and the pair correlation of t
model are evaluated for the boson case, and the condens
effects on these quantities are studied.

A. Density

The densityn(r ) in the case of boson statistics can
obtained fromnq , and reads

n~r !5
1

N(
l 51

N ZI~N2l !

ZI~N!

j l 21b~3/2!l

~12bl !3 Swmp\
Al D 3/2

3expS 2
mwr2

\
Al D , ~3.1!

with

Al 5
1

coth12 l b\w1
1

NS wVcoth12 b\V2coth12b\wD ,
~3.2!

wherer stands for the distance from the center of the co
fining potential. The density is centrosymmetric, as a con
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quence of the isotropy of the model. Introducing the activ
r j as in I from ZB(N)5@b3/2N/) j51

N (12bj )3#) j50
N r j the

density can be rewritten as follows:

n~r !5
1

N(
l 51

N
1

~12bl !3SwmAl
p\ D 3/2expS 2

mw

\
r 2Al D

3 )
j5N2l 11

N
~12bj !3

r j
, ~3.3!

which allows for a recursively defined expression well sui
for numerical evaluation

n~r !5
1

N

~12bN!3

rN
S a11 ~12bN21!3

rN21
H a21 ~12bN22!3

rN22

3Fa31•••1
~12b2!3

r2
S aN211

~12b!3

r1
aND G J D ,

~3.4!

with

al 5Swmp\ D 3/2 Al
3/2

~12bl !3
e2r2Al , ~3.5!

wherer5rAmw/\ is a natural dimensionless quantity pr
portional to the distance from the center. Sin
T5tTc;tN1/3 ~whereTc is the condensation temperature f
the Bose-Einstein transition!, r/N1/6 is a natural quantity
against which to plot the density. The results are summar
in two figures. In Fig. 1, the densityn(0)/nT50(0) in the
origin is shown@wherenT50(0) is the density in the origin a
zero temperature#, and exhibits a pronounced dependence
the condensation temperature. In Fig. 2,n(r )/n(0) is plotted
as a function ofr for 1000 particles. For comparison, th
corresponding densities for the case of distinguishable
ticles are plotted in Fig. 3.Tc is only used as a referenc
temperature for comparison purposes to Fig. 2; it does
have the meaning of a condensation temperature if the
ticles are distinguishable.

FIG. 1. Boson densityn(0)/nT50(0) at the origin as a function
of temperature.
d

d

n

r-

ot
r-

The typical shape of the density as a function of the tem-
perature is shown in Fig. 4 forT50, T50.9Tc , T5Tc , and
T51.1Tc , where the spatial dependence of the density
n(x,0,z) is plotted at a fixed valuey50 for 1000 particles. It
should be noted that the sudden appearance of an inten
peak belowTc when sweeping through the condensation
temperature is also manifestly present in isotropic systems.

The center-of-mass contribution to the density can be sub
stantial for a limited number of particles. For 1000 particles
this single degree of freedom quantitatively makes a negli-
gible contribution to the density as a function ofrAw; the
effects of the interaction enter in the eigenfrequency
w5AV22Nv2, which determines the scaling parameters in
the figures.

B. Pair correlation function

An analogous analysis to that for the density can be mad
for the pair correlation function:

FIG. 2. Scaled density of bosonsn(r )/n(0) for 1000 particles as
a function of the distancer from the center for several tempera-
tures.

FIG. 3. Scaled densityn(r )/n(0) for 1000 distinguishable par-
ticles for comparison to Fig. 2.
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g~r !5
1

N(
l 52

N ZI~N2l !

ZI~N!

j l 21b~3/2!l

~12bl !3

3 (
j51

l 21 S mw

2p\
Ql , j D 3/2FexpS 2

mwr2

2\
Ql , j D

1jexpS 2
mwr2

2\

1

Ql , j
D G . ~3.6!

Introducing

ql 5 (
j51

l 21 S mw

2p\
Ql , j D 3/2 1

~12bl !3FexpS 2
mwr2

2\
Ql , j D

1expS 2
mwr2

2\

1

Ql , j
D G ~3.7!

~with q150),a recurrence relation forg(r ) can be obtained
similarly as forn(r ), but withal from Eq.~3.5! replaced by
ql . In the same units as for the density,g(r )/g(0) is plotted
in Fig. 5. Similarly as for the density in the Sec. III A
g(r )/g(0) of distinguishable particles is shown in Fig. 6 f
comparison to the boson case in Fig. 5.

The interpretation of Fig. 5 requires some caution,
causeg(r )/g(0) is plotted, and the magnitude ofg(0)
strongly depends on the condensation temperature. Neve
less, it is clearly seen that the probability of finding anoth
particle at a relatively small distancer from some particle is
very pronounced in the condensate. Above the critical te
perature a more substantial contribution is obtained at r
tively large distances, but the boson character still manife
itself by a larger probability of finding particles at relative
short distances from the center.

FIG. 4. Probability densityn(x,0,z) for 1000 particles as a func
tion of x andz for T50, T50.9Tc , T5Tc , andT51.1Tc .
-
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IV. DISCUSSION AND CONCLUSIONS

The present paper concludes the boson part of a stud
an exactly soluble model containing one type of particl
The system exhibits condensation at a finite tempera
Tc . Thermodynamical quantities such as the internal ene
the specific heat, and the moment of inertia have been s
ied before by the present authors, and also by others@14–
18#, as far as some noninteracting aspects or ground s
properties@19# are concerned. The density of this model is
important response property. Precisely the concentra
variations as a function of the cooling and the field are
voked to establish the condensation transition@3,4#. There-
fore it is comforting that the predictions of this theoretic
model—which of course constitutes a simplification—ba
some resemblance to the simulated density of an anisotr
boson oscillator model@20#, and to the experimental situa
tion in several aspects. It should be noted~i! that the mag-
netically induced anisotropy of the trap is not taken in
account in the present paper, and~ii ! that the interparticle
interactions are replaced by harmonic two-body interactio

FIG. 5. Scaled pair correlation functiong(r )/g(0) of 1000
bosons as a function of the distancer for several temperatures.

FIG. 6. Scaled pair correlation functiong(r )/g(0) of 1000 dis-
tinguishable particles for comparison to Fig. 5.
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Furthermore it is assumed that the time scale of the exp
ment allows for an interpretation in terms of the therm
equilibrium response properties. It is clear that these sim
fications deserve further investigations.

In addition, the pair correlation function of the model
an important quantity especially if one wants to investig
the modifications due to a more realistic interparticle int
action using a variational approach. Indeed, an estimat
the effective interparticle potential along the lines of Re
@6,7# requires the pair correlation function of this exac
soluble model, that is taken as the zeroth-order approxi
tion to the system. From the methodological point of vie
the projection and the generating function technique allo
one to obtain tractable and exact expressions for the ther
v.

an

n,
tt.

et

tt.

ta

v.
ri-
l
li-

e
-
of
.

a-
,
s
o-

dynamic quantities and for the static response functions
system of identical boson oscillators.
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