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Density and pair correlation function of confined identical particles: The Bose-Einstein case
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Two basic correlation functions are calculated for a mode\ dfarmonically interacting identical particles
in a parabolic potential well. The density and the pair correlation function of the model are investigated for the
boson case. The dependence of these static response properties on the complete range of the temperature and
of the number of particles is obtained. The calculation technique is based on the path integral approach of
symmetrized density matrices for identical particles in a parabolic confining Ml063-651X97)14306-9

PACS numbgs): 05.30—-d, 03.75.Fi, 32.80.Pj.

I. INTRODUCTION an exactly tractable system with interactions, which clearly
exhibits the effects of Bose-Einstein condensation in the spe-
Generalizing the Feynman approach of identical particlesific heat[11] and in the moment of inertigl2].
in a box[1] to the case of identical particles in a parabolic ~The one-body potential energ¥; and the two-body po-
confining potential, the present authors derived analytic extential energyv, of the model system are given by
pressions for the propagator and for the partition function of
a system ofN harmonically interactingdentical particles

(bosons or fermionsin a parabolic well[2], hereafter re- V=V;+V,, V1=TE rjz,
ferred to as I. This model, giving rise to repetitive Gaussian =1
integrals, also allows us to obtain the generating function for N
> ; . : ) M2
the partition function. For an ideal gas of noninteracting par- Vo= — 2 (ri—r)2. (1.2
ticles in a parabolic well, this generating function coincides 2 4 =)

with the grand-canonical partition function. For interacting

particles this generating function circumvents the constraintd he two- body interaction is assumed to be repulsive; replac-
on the summation over the cycles of the permutation groufnd — @ by ®? in V gives the attractive case. As a result of
at the expense of domg an extra path |nteg|’a| the dlagonallzatlon one obtaims each dimensiommne de-

In the present paper the one- and two-point correlatiorgree of freedonithe center of magswith frequency(, and
functions of the model are calculated using their generating —1 degrees of freedom with frequenaygiven by
function as we did for the thermodynamic properties of the
model. Also, here we have to introduce extra path integrals w=Q?—No?. (1.2
of Gaussian nature to facilitate the cyclic summations.

The one- and two-point correlation functions of the modelFor this many-body system, distinguishability of the particles
are obtained for the boson case as well as for the fermiotherefore implies that one is dealing with a system that re-
case. But in view of the recent interest in Bose-Einstein conduces to 3l degrees of freedom, each degree of freedom
densation in a tra3-5], the explicit evaluation and the representing one linear harmonic oscillator. It is clear that for
discussion of the results are restricted to the boson case such a system the propagator, the thermodynamic functions,
the present paper. The fermion case will be studied in @nd the correlation functions are well knoyts].
forthcoming paper. For identical particlegbosons or fermionshe propagator

In the case of distinguishable particles, the correlatiorcan be obtained from the decomposition of the underlying
functions play a key role in the variational approximation for processes in terms of four orthogonal processes with well-
path integralg6,7]. This variational method can be reformu- defined boundary conditiorf8—10]. A typical sample path
lated for indistinguishable particles, and the knowledge offor fermions is provided by the subprocess with absorption at
the one- and two-point correlation functions for harmonicthe boundary for the direction (leading to a fermion diffu-
trial actions is as crucial as it is for distinguishable particlession process while for they andz directions a boson dif-
For any algorithmic approach to many-body diffus[@&-10]  fusion process with reflection at the boundary has to be used.
for interacting particles, the knowledge of the correlationThis procedure is used to generate the trajectory of the walk-
functions of the model is very useful to test the actual imple-ers(including they andz componentgs The path of a walker
mentations. Furthermore, the model provides an example ah this particular subprocess terminates if the motion in Eu-

clidean time is absorbed along tkedirection. Indistinguish-
ability therefore has the important effect of making the
* Also at Universiteit AntwerpefRUCA) and Technische Univer- coupled oscillator problem in three dimensions a genuine
siteit Eindhoven, The Netherlands. three-dimensional3D) problem.
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d .
z o(r r|+r|/)> :J'(ZTq)ggqeflqu

In I we showed how extra degrees of freedom for the
center of mass can be introducéd Fourier spacg leading g(r)—

to a propagator which factorizes. The extra degrees of free- LIl

dom can be integrated out afterwards. As a consequence, the N

internal degrees of freedom of the interacting oscillator sys- :i 2 el (r=r) 2.3
tem can be considered as the degrees of freedom of another 9 N, '

noninteracting oscillator system. This mapping allows us to

use the grand-canonical partition function of the noninteract- Collecting the appropriate expressions for the propagators
ing system as the generating function for the system in interK,(r, ﬁ|r ,7) and K|(r T|r ,0) from |, one sees that the
action, provided the fugacity and hence the thermodynamicdfourier transforms, andg, are given by

potential are identified as usual.

The calculation of the density and the pair correlation dR dk
function heavily relies on the calculations presented in I,  Ng= NZ.J f 23 el RJ dr e 'c fZ e r'—
which makes it difficult to make this paper self-contained
without repeating some of the material presented in I. We
tried to overcome this inconvenience partly by using the X pr K((Pr);,B[rj,0w, (2.4
same notation as in I, and by a limited number of explicit P =t
references to the detailed manipulations in | if similar situa-
tions are encountered. dR dk ok R s

The paper is organized as follows. In Sec. Il the one- and 99~ NZ,J j (277 f dre NI
two-point correlation functions are calculated for identical
particles(bosons or fermionsin Sec. Il the density and the
pair correlation function are analyzed for the boson case. In XE & E el H K((Pr);.
Sec. IV we discuss the results, and draw some conclusions.

|rj10)wr
p 11" #1

(2.9

where Z, is the partition function,K(rj’ ,,8|r]-,0)w is the
Il. STATIC RESPONSE PROPERTIES propagator of a 3D harmonic oscillator with frequenay
OF A MANY-BODY SYSTEM P denotes a permutation matrix, ager —1 assures the re-
uired antisymmetry for fermions, whereg&s + 1 describes
osons. We first show how a tractable expression can be
obtained forn,, and subsequently use an analogous proce-
dure to calculateyy .

For the calculation of the static response properties of
many-body system, the correlation functioBge'® "), and
S (e4 =)y are the key ingredients. The subscript
emphasizes that identical particles are considémdaich can
be specified to be bosons with subscipbr fermions with
subscriptF) in three-dimensions. In the path integral ap-

proach the expectation values of an expres#i¢n’,7) are Using the cyclic decomposition, and denoting iy the

given by number of cycles of length’, the expression fon, can be
written in terms of the cycles in the same way as we did for
the partition function in I:

A. Single-particle expectation values

dr | dr/Ky(r,Blr", DA DK (11,0
j rf K (r, BT DA, DK (1, 7]T,0) ng= szfﬂ;e'” 2 E/M/K/(kq)
. .

(A(T))= - '
fdrK,(r,,B|r,0) =ty -
_ o _ _ g =M
where K, is the statistical propagator of the identical par- X H m(;c/,(k))'\/'/' (2.6)
ticles andr is the 3N-dimensional vector containing the co- R
ordinatesry, ... ry of the N particles. In this notation the ..o

probability density, the pair correlation function and their
Fourier transforms are given by

IC/(k,q)=j dr/HJ dr,- "Jdr15(r/+1—r1)eiq'rl

_1 % _ dg “igr /
j=1
N
n :E 2 (e, (2.2) and K, (k)=K(k,g=0) is precisely the same function as
N =1 found in Eq.(2.20 of | for the determination of the partition
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function. Both the integrations ovée and R only involve

Gaussian integrands, and one eventually finds, after some bq=

algebra,

ho? coth%,BhQ coth%ﬂhw

~ 4mN Q - w Ng-
(2.9

Ng=e€ex

The factor in front ofan'q accounts for the center of mass,
and obviously reduces to unity in the noninteracting case G

wherew=Q. The factorﬁq itself denotes the expectation

value of =,e'9'"l in the subspace of theelative coordinate
system onlyith partition functionZ,(N):

- 1 ,
NGO 2 | > M

1
ﬁqzcothi/ Bhw

X exp| — 4mw

g/ =M, 1 3aM,

<11

MM 29

1
Zsinhz—/,eﬁw

In K,(k,q), one recognizes the partition functigover a
time interval /B) of a driven 3D harmonic oscillator with
frequencyw,

/C/(k,GI)=J dr K(r,/B|r,0 e [0 drfa(m (o)

1 /=1
fq(T)ziNijl S(r—jp)+i

k
N—q) 87, (210
which is known[1,6] in closed form:

1

K (k,q)= /
(ZSinh?ﬁw

(i
)3e q,

_ﬁ /B /B fy(7)-f4(0)
q)q_zjo drfo dG—ZmW
1% |l
cos - |7 hw
X . 2.1
sinhg/ Bhw (211

The calculation ofp,, givenf(7) as a sum ob functions,
is straightforward. The result is

6797
ho(/K? 1h 2|<-q 1h
" amw) N2 Ot AR 2reothy SR
2 1 4
+q cothi/ﬂhw), (2.12
and, consequently,
k,q) =K, (k ASCIU
K ka) =K (kexp 55 coth; Shw
1/ f 2.1
4mwcoth§/ﬁ Wi, (2.13

B ho/k* 1
K, (k)= y 3EeX —mvcothiﬁﬁw.
Zsinh7hw
(2.19
Introducing the  generating  function G;(u,q)

=3 N=olZi(N)NngJuN,

Gl(u,q)=N§=lo y ZM [2/) M,/

F{ ﬁqzcoth%/ﬁ‘hw) }
Xexp — ————————
Amw

&/ =y’ M,

| . (219

7 M {/(23inh§/,8ﬁw)3

the summations can be done:

hg> 1
& ‘1ex;<— d cothi/ﬁﬁw)
/

4mw

(2.19

whereZ,(u)=3y_0"Z (N)uN is the generating function of
the partition functionZ;(N) of N identical oscillators in the
relative coordinate system, studied in I. Consequently

Gr(u,a)=E(u) 2, (2sinhz/ Bhw)®

& lexp — ha? cotht/ Bhw
~ 1 amw- 2’

lamNA (23inh§/,8ﬁw)3

) Z(N=/)
Z(N)
(2.1

Considering the limig—0, it should be noted that the sum
rule ng_o=1 is indeed satisfied.

B. Two-particle expectation values

Similarly to the treatment of the single-particle correlation
function, the Fourier transform, which allows us to treat the
center-of-mass coordinate as an independent degree of free
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dom, is introduced. The cyclic decomposition of the permu-the casd =1" has to be excluded if, andr,, are within the
tations implies that a factag'd"" occurs once in each posi- same cyclg Taking these bookkeeping considerations into
tion of each cycle. Furthermore a different fac&¥ "’ oc-  account, the cyclic decomposition of the summation over the
curs in each position of each cycle which differs fropti.e.,  permutations leads to

1 dR dk gy
— k R
gq_lef f 207 2, (H M1/

/=1
Z KAk, 0: + 1) (kM TT (k)M
Y
XZ /M, +/ (M, =D KKKk, =AM 2 [T (1, (k)M , (2.18
/ S
+ 2 MK KD (K, =) ARDM I~ T (k)M
N+ M+
|
where K (k,q) and I (k) are defined as Sec. Il A and a . 1 3 -
function K ,(k,q;j) is introduced which is given by KAkgj+)=| ——5—| € alh),
25inh7ﬁw
’C/(k,q;j):f dr,/+1f dr/"'fdr15(r/+1_r1)
o /ﬁ hg(7,)) - hg(7,])
x e rig™'arj — PRAAL A LT
‘ =y "ar[ Par D
X ]._.[ K(rj’+liﬁ|rj’vo)w r( ’ )
i'=1 cosh—-—|7-0o hw
e I(ANK-rjr (2.19 X 1 . (2.2)
sinhi/',Bhw

In £,(k,q;j), one recognizes the partition functidaver a

time interval /8) of a driven 3D harmonic oscillator with

frequencyw: The explicit evaluation of the influence functiding(j) is
somewhat involved but straightforward,

_ ‘ /B -
K (k,q;j+1 :J dr K(r,/B]r,0),,e fo d™Ma(m))-1(7),
/( a:) ) ( B| )W v / th e,BhW+1
= q(J)__W4mweﬁﬁw—1
hq(T’J):INkjgo 5(T_J B)_Iq5(7)+lq5(7-_1ﬁ)' ﬁqz COSI’%/’ﬁhW_COSI'( %/_J)Bhw
(2.20 2mw sinh / Bhw '
(2.22

Similarly as for single-particle correlation functions, this ex-
pression is knowi1,6] in closed form: and, consequently,

#q? coshy/ Bhw—cost(3/ —j)phw
2mw sinh; 7/ Bhw '

IC/(k,q;jJrl):IC/(k)exp( - (2.23

Using the results obtained in Sec. Il A & ,(k,q) and K (k), the Fourier transform of the pair correlation function
becomes
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1 dRdk ., -
g :—J j—ge' '

/2*:1 fg? cosht/ Briw—cost3/ —j)Bhw
exg —
“ 2mw sinh; / Bhw

g(/*l)M/ ’

M, , 17q 1
XM12MN (1:[ M/I/M/)l:[ (’C/(k)) Z /M/ +/(M/_1)ex%_§mcot //,BﬁW)

1402 L L
+ > /'M, exg — - — (cotht/ Bhiw+ cothi /' Bhw)
ey 4 mw

(2.29

The conditionX ,~M ,=N on the cyclic decompositions It should be noticed that only cycles with length at least two
simplifiesI1 (K, (k))M~, and the integrations ovér andR contribute to the pair correlation function, as is to be ex-

are then straightforward, resulting in (sibphw/  Pected. Because the series expansio@igt,q) in powers
N 3 . ) of u yields 7 (N)Ng, as the coefficient otiN, one immedi-
sinh 3 BAQ)°. The remaining summation over the cycles Canately obtains

again be done if one introduces the appropriate generating

function 1 N g/‘lb%/
. Noa=7 12, 4N=) =pry
92<u,q>=N20 [Z(N)NggJu®, (2.29

/-1
x>
=1

- w51
exp — —

2mw Q, ;(b)
which lifts the restriction on the number of cycles of given

2
length. The summation is straightforward. With=e~#"", _ 3 _ hq ,
o e +EQ j(0)%exg — 5 —Q, (D) || (2.29
. s, In the case of the pair correlation functigy, the sum rule
_ & tu'p2’ Jq—0o=N—1 can also be checked. The proof proceeds by
Go(u,q)=5,(u) /2:1 =0 )° induction, but it is rather tedious and is omitted here. All

details of this calculation are provided upon request.

/-1 i i
fg? (1-bh)(1—b" 7}

— I1l. BOSON DENSITY
XJ'E::]_ eX;{ 2mw 1-b’

AND PAIR CORRELATION FUNCTION

Z Ty pBRs 792 1+b” 2 In this section the density and the pair correlation of the
+ T pn3 SXB T e —n model are evaluated for the boson case, and the condensation
=1 (1-Db") dmw 1-b . .
effects on these quantities are studied.
(2.2
A. Density
Using 7 _,a,)?=37_,3{ l'aja,_;, and defining The densityn(r) in the case of boson statistics can be
p obtained fromn,, and reads
1-b’
. = N ) _
Q/j(b) A=b)(1=b")’ (2.27 o :i Z(N=/) & 1b(3/2)//V£nA 312
N~ Z(N)  (1-b)3\ah™
the terms can be combined into 5
mwr
sy p3RY Xex;{ R A/)' @D
Go(u. ) = (W) 2, ~ =y with
/=1 2 1
fq 1 )
X exp — — A= :
le [{ 2mw Q, ;(b) w

Qcoth% BhO— coth%,Bhw)

(3.2

wherer stands for the distance from the center of the con-
(2.28  fining potential. The density is centrosymmetric, as a conse-

) 1
coths 7/ Bhw+ N(

5 hg?
+EQ (b)) %exp| — 5——Q,(b) | |.
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FIG. 1. Boson densitn(0)/n1-(0) at the origin as a function
of temperature.

FIG. 2. Scaled density of bosongr)/n(0) for 1000 particles as
a function of the distance from the center for several tempera-
tures.
quence of the isotropy of the model. Introducing the activity
pj as in | from Zg(N)=[b¥/II}L,(1-0))3|I}L 4p; the
density can be rewritten as follows:

wmA, | %2 mw
—A/) exr{——rzA/)

The typical shape of the density as a function of the tem-
perature is shown in Fig. 4 fof=0, T=0.9T., T=T,, and
T=1.1T., where the spatial dependence of the density
n(x,0,z) is plotted at a fixed valug=0 for 1000 particles. It
should be noted that the sudden appearance of an intense
peak belowT. when sweeping through the condensation
temperature is also manifestly present in isotropic systems.

The center-of-mass contribution to the density can be sub-
_ ) _ ) ~stantial for a limited number of particles. For 1000 particles
which alloyvs fora rec_urswely defined expression well suitednig single degree of freedom quantitatively makes a negli-
for numerical evaluation gible contribution to the density as a function ofw; the
effects of the interaction enter in the eigenfrequency

18 1

"N=52 TP, mh 7

N (1-bi)d

j=N-/+1 Pj

; (3.3

1 (1-bY)3 1-bN"1)3 1-bN=2)3 : . i ;
n(r)y=— ( ) /a1+ ( ) Iaz+ ( ) w= Q%= Nw?, which determines the scaling parameters in
N \ -1 | PN-2 the figures.
(1-b?)3 (1-b)® ])
Xa3+"'+—aN_1 aN y
p2 P1 B. Pair correlation function
3.4 An analogous analysis to that for the density can be made
. for the pair correlation function:
with
32 p32
wm A
a,=| — % e‘PZA/, (3.5 1.0
Th (1-b )3
0.8 1
wherep=rmw/# is a natural dimensionless quantity pro-
portional to the distance from the center. Since
0.6

T=tT.~tN3 (whereT, is the condensation temperature for
the Bose-Einstein transition p/NY® is a natural quantity
against which to plot the density. The results are summarize € o0.4-
in two figures. In Fig. 1, the density(0)/nt-4(0) in the

—
(=]
~
c
=
=
S

origin is shownwheren;_,(0) is the density in the origin at 02 =1000 . i
zero temperatufeand exhibits a pronounced dependence or D opahanle ™ IR
the condensation temperature. In Figng;)/n(0) is plotted TN~
as a function ofr for 1000 particles. For comparison, the 0.0 T T T —=
corresponding densities for the case of distinguishable pal 0.0 0.5 10 15 20
ticles are plotted in Fig. 3T, is only used as a reference pIN"®

temperature for comparison purposes to Fig. 2; it does not

have the meaning of a condensation temperature if the par- FIG. 3. Scaled density(r)/n(0) for 1000 distinguishable par-

ticles are distinguishable.

ticles for comparison to Fig. 2.
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n0

n1
T=0.9T¢

n2

FIG. 4. Probability density(x,0,z) for 1000 particles as a func-
tion of x andz for T=0, T=0.

n3
T=1.1T¢

gT., T=T,, andT=1.1T,.

6801
1.0 1 i 1
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FIG. 5. Scaled pair correlation functiog(r)/g(0) of 1000
bosons as a function of the distancéor several temperatures.

IV. DISCUSSION AND CONCLUSIONS

The present paper concludes the boson part of a study of
an exactly soluble model containing one type of particles.
The system exhibits condensation at a finite temperature
T.. Thermodynamical quantities such as the internal energy,
the specific heat, and the moment of inertia have been stud-

18 Z(N=/) & 1p3/ ied before by the present authors, and also by otfibts-
g(r)= —/22 ZL(N) (1-b7)3 18], as far as some noninteracting aspects or ground state
- ! propertied19] are concerned. The density of this model is an
1 imw 3/2 mwr2 important response property. Precisely the concentration
X E (ﬂQﬂi) ex[{ - TQ”) variations as a function of the cooling and the field are in-
=1 \em voked to establish the condensation transifid@]. There-
mwr? 1 fore it is comforting that the predictions of this theoretical
+§ex;{ - Q—) . (3.6 model—which of course constitutes a simplification—bare
7 some resemblance to the simulated density of an anisotropic
. boson oscillator moddl20], and to the experimental situa-
Introducing tion in several aspects. It should be notédthat the mag-
S netically induced anisotropy of the trap is not taken into
' mw 21 [ mwr? account in the present paper, afid that the interparticle
=> [=—=0Q,; exd — Q, . ; . : ; .
a4, = (Zwﬁ ﬂl) (1-b )3[ ‘{ 2% /,l) interactions are replaced by harmonic two-body interactions.
[{ mwr? 1 ) 3 ‘o | . .
Tex 2 Q| S ' LSRR~ N=1000
No Ten Distinguishable
. . . _ particles
(with g;=0),arecurrence relation fog(r) can be obtained 08 ~
similarly as forn(r), but witha , from Eq.(3.5) replaced by
g, . In the same units as for the densigfy)/g(0) is plotted ~ 0.6
in Fig. 5. Similarly as for the density in the Sec. Ill A %
g(r)/g(0) of distinguishable particles is shown in Fig. 6 for =
comparison to the boson case in Fig. 5. S 0.4+
The interpretation of Fig. 5 requires some caution, be-
causeg(r)/g(0) is plotted, and the magnitude af(0) 0.2
strongly depends on the condensation temperature. Neverthe |
less, it is clearly seen that the probability of finding another
particle at a relatively small distancefrom some particle is 0.0
very pronounced in the condensate. Above the critical tem- 0.0

perature a more substantial contribution is obtained at rela-
tively large distances, but the boson character still manifests
itself by a larger probability of finding particles at relatively
short distances from the center.

FIG. 6. Scaled pair correlation functiay(r)/g(0) of 1000 dis-

tinguishable particles for comparison to Fig. 5.
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Furthermore it is assumed that the time scale of the experidynamic quantities and for the static response functions of a
ment allows for an interpretation in terms of the thermalsystem of identical boson oscillators.
equilibrium response properties. It is clear that these simpli-
fications gieserve further mvest!gatlons.. ' ACKNOWLEDGMENTS
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